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Abstract: Non-leptonic kaon decays are often described through an effective chiral weak

Hamiltonian, whose couplings (“low-energy constants”) encode all non-perturbative QCD

physics. It has recently been suggested that these low-energy constants could be determined

at finite volumes by matching the non-perturbatively measured three-point correlation

functions between the weak Hamiltonian and two left-handed flavour currents, to analytic

predictions following from chiral perturbation theory. Here we complete the analytic side in

two respects: by inspecting how small (“ε-regime”) and intermediate or large (“p-regime”)

quark masses connect to each other, and by including in the discussion the two leading

∆I = 1/2 operators. We show that the ε-regime offers a straightforward strategy for

disentangling the coefficients of the ∆I = 1/2 operators, and that in the p-regime finite-

volume effects are significant in these observables once the pseudoscalar mass M and the

box length L are in the regime ML<∼ 5.0.
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1. Introduction

Understanding why the ∆I = 1/2 amplitudes for non-leptonic kaon decays are so much

larger than the ∆I = 3/2 amplitudes, is a long-standing problem for QCD phenomenology.

It has been known since the early 70s that the bulk of the enhancement must be due to

strong interactions at low energies [1]. Therefore a reliable explanation must eventually be

based on systematic non-perturbative methods, in particular on lattice QCD [2, 3].

It was realized long ago that instead of computing directly the decay amplitudes with

lattice QCD, a simpler alternative is to use lattice simulations to determine the relevant
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low-energy constants (LECs) of the effective chiral weak Hamiltonian that describes kaon

decays [3], and then use chiral perturbation theory to compute the physical amplitudes [3]–

[8]. The determination of the LECs can be achieved by matching certain observables

computed in lattice QCD and in chiral perturbation theory (χPT), as close as possible

to the chiral limit. In this respect it is advantageous to approach the chiral limit by first

extrapolating to small or zero quark masses, and increase the volume only afterwards.

This setup corresponds to the so-called ε-regime of χPT [9] (see also ref. [10]). The power-

counting rules in this regime [9] guarantee that the contamination from higher order LECs

is reduced very significantly. In other words, the number of LECs that appear at the next-

to-leading order (NLO) in the ε-regime of χPT is typically much smaller than that at the

next-to-leading order in the standard p-regime, where the infrared cutoff is provided by

the pion mass rather than the volume.

The matching of lattice QCD and the chiral effective theory in the ε-regime has recently

been considered in order to extract the strong interaction LECs [11]–[18]. Subsequently,

it has been pursued for the determination of the weak LECs that we are interested in [15,

19, 20], as well as for the study of baryon properties [21]. This progress has been possible

thanks to the advent of Ginsparg-Wilson formulations of lattice fermions [22]–[29], which

possess an exact chiral symmetry in the limit of vanishing quark masses. Simulations in

this regime are however challenging on the numerical side, and refs. [15, 17] introduced

several important technical advances in order to make them possible.

In ref. [20], a strategy based on these methods has been proposed to reveal the role that

the charm quark mass plays in the ∆I = 1/2 rule. In particular, following the suggestion

of ref. [15], the observables that are considered are three-point correlation functions of two

left-handed flavour currents and the weak operators. The first step is the matching of these

observables, to extract the LECs of the weak chiral effective Hamiltonian, in a theory with

a light charm quark, that is in a four-flavour theory with an exact SU(4) symmetry in the

valence sector. The results of this computation can be found in ref. [30]. The next step

of the strategy is to increase the charm quark mass and monitor the LECs as we move

towards a theory with an SU(3) flavour symmetry [20, 31].

In a previous paper [19], we have already computed the NLO ε-regime predictions for

the correlators of left-handed flavour currents and the ∆I = 3/2 weak operator, whose

coefficient determines the kaon mixing parameter B̂K in the chiral limit. The purpose of

the present paper is to extend the results of ref. [19] in two ways. First of all, we compute

the same observables as before, but also at larger quark masses, corresponding to the p-

regime of chiral perturbation theory. The goal is to obtain a better understanding of the

regions of validity of the ε and p-regimes. Second, we include the ∆I = 1/2 weak operators

in the analysis.

We find that the ε-regime does offer a clean way of disentangling the coefficients of the

two leading-order ∆I = 1/2 operators.

It is well known that the description of quenched simulations, which still are widely

in use today, through a quenched version of chiral perturbation theory, is rather problem-

atic. In particular the p-regime is strongly affected by quenched ambiguities that increase

significantly the number of LECs [32], making it difficult to identify those that should be
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closest to the ones in the full theory. We have studied the effect of these ambiguities also

in the ε-regime at NLO, and find that they are significantly less severe in this case.

In most of our analysis we will concentrate, however, on the full physical theory. The

most immediate applications might then follow through the use of mixed fermion frame-

works [33], though progress towards dynamical Ginsparg-Wilson fermions is also taking

place [34].

It should be made clear from the onset that choosing to consider correlators involving

left-handed flavour currents in this paper, is not meant to indicate that they would nec-

essarily be the ultimate way for determining the weak LECs. For instance, employing the

zero-mode wave functions of the massless Dirac operator might also lead to a useful probe,

even though for the pion decay constant they seem to be slightly disfavoured in comparison

with the left-handed flavour currents [16].

Other methods to obtain the weak LECs have also been considered in the literature.

For lattice approaches without an exact chiral invariance see, e.g., the recent work in

refs. [35]. For models inspired by the large-Nc expansion see, e.g., refs. [36, 37].

This paper is organised as follows. We formulate the problem in section 2, discuss the

various regimes of chiral perturbation theory in section 3, address the ∆I = 3/2 operators

in section 4, and the ∆I = 1/2 operators in section 5. We conclude in section 6.

2. Formulation of the problem

We start by considering QCD with 4 flavours. The quark part of the Euclidean continuum

Lagrangian reads

LE =

4
∑

r=1

ψ̄r(γµDµ + mr)ψr , (2.1)

where r is a flavour index; the Dirac matrices γµ are assumed normalised such that γ†
µ = γµ,

{γµ, γν} = 2δµν ; Dµ is the covariant derivative; mr is the quark mass; colour and spinor

indices are assumed contracted; and repeated indices are summed over, even when no

summation symbol is shown explicitly. In the following we will consider the three lightest

quarks as degenerate in mass, mu = md = ms ≡ m, while the charm quark is heavier,

mc À m.

After an operator product expansion in the inverse W boson mass, weak interactions

can be described with the Fermi theory involving four-quark operators. In the CP con-

serving case of two generations, the effective weak Hamiltonian is then [1] (for reviews see,

e.g., [38, 39])

Hw = 2
√

2GF VudV
∗
us

{

∑

σ=±1

hσ
w

(

[Ow]σsuud − [Ow]σsccd

)

+ hm[Om]sd

}

+ H.c. , (2.2)

where h±
w , hm are scheme-dependent dimensionless Wilson coefficients, with leading order

values h±
w = 1, hm = 0. The coefficients h±

w are known to two loops in perturbation

theory [40], while hm remains undetermined. In eq. (2.2) we have introduced the notation

[Ow]σrsuv ≡ 1

2

(

[Ow]rsuv + σ[Ow]rsvu

)

, (2.3)

– 3 –



J
H
E
P
1
0
(
2
0
0
6
)
0
6
9

[Ow]rsuv ≡ (ψ̄rγµP−ψu)(ψ̄sγµP−ψv) , (2.4)

[Om]sd ≡ (m2
c − m2

u){ms(ψ̄sP−ψd) + md(ψ̄sP+ψd)} . (2.5)

Here r, s, u, v are generic flavour indices, while u, d, s, c denote the physical flavours. The

chiral projection operators P± read P± ≡ (1±γ5)/2, where γ5 = γ0γ1γ2γ3. The colour and

spinor indices are assumed to be contracted within the parentheses.

In order to match the Hamiltonian of eq. (2.2) to the one in the SU(3) chiral theory,

the first step is to decompose it into irreducible representations of the SU(3)L×SU(3)R
flavour group, present at low energies. The weak operators are singlets under SU(3)R, and

projecting them onto irreducible representations of SU(3)L, the weak Hamiltonian can be

rewritten as

Hw = 2
√

2GF VudV
∗
us

{

h+
w [Ôw]+suud +

1

5
h+

w [Rw]+sd − h−
w [Rw]−sd −

− 1

2
(h+

w + h−
w)[Ow]sccd −

1

2
(h+

w − h−
w)[Ow]scdc + hm[Om]sd

}

+ H.c. , (2.6)

where

[Ôw]+suud ≡ 1

2

{

[Ow]suud + [Ow]sudu − 1

5

∑

k=u,d,s

(

[Ow]skdk + [Ow]skkd

)}

, (2.7)

[Rw]±sd ≡ 1

2

∑

k=u,d,s

(

[Ow]skdk ± [Ow]skkd

)

. (2.8)

The first operator in eq. (2.6) transforms under the 27-plet of the SU(3)L subgroup: it is

symmetric under the interchange of quark or antiquark indices, and traceless. The remain-

ing ones, transforming as 3∗ ⊗ 3 and being traceless, belong to irreducible representations

of dimension 8.

If, as the next step, the charm quark is also integrated out, then the operators in

eq. (2.6) go over into the standard ones, commonly denoted by Qi, i = 1, . . . , 6 [41, 42] (of

which five are independent). It is probably safer to keep the charm quark in the simulations,

though, since integrating it out perturbatively is not guaranteed to be a safe procedure.

Moreover, the quenched three-flavour theory contains spurious operators [32]. For these

reasons, we prefer to consider the four-flavour theory of eq. (2.6) to be the QCD-side of

our problem.

Now, at large distances, the physics of QCD can be reproduced by chiral perturbation

theory. For a degenerate quark mass matrix, the leading order chiral Lagrangian reads

LχPT=
F 2

4
Tr

[

∂µU∂µU †
]

− mΣ

2
Tr

[

eiθ/Nf U + U †e−iθ/Nf

]

, (2.9)

where U ∈ SU(Nf), Nf ≡ 3, and θ is the vacuum angle. Apart from θ, this Lagrangian

contains two parameters, the pseudoscalar decay constant F and the chiral condensate Σ.

At the next-to-leading order in the momentum expansion, additional operators appear in

the chiral Lagrangian, with the associated low-energy constants L1, L2, . . . [43].
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Obviously the chiral model can be extended to include a weak Hamiltonian [44]. We

denote the chiral analogue of Hw in eq. (2.6) by Hw. To again define dimensionless coeffi-

cients, we write Hw in the form [3, 5]

Hw ≡ 2
√

2GF VudV
∗
us

{

5

3
g27O27 + 2g8O8 + 2g′8O′

8

}

+ H.c. , (2.10)

where g27, g8 and g′8 are the low-energy constants we are interested in. The operators read

O27 ≡ [Ôw]
+

suud =
3

5

(

[Ow]sudu +
2

3
[Ow]suud

)

, (2.11)

[Ow]rsuv ≡ F 4

4

(

∂µUU †
)

ur

(

∂µUU †
)

vs
, (2.12)

O8 ≡ [Rw]+sd =
1

2

∑

k=u,d,s

[Ow]skkd , (2.13)

O′
8 ≡ F 2

2
mΣ

(

eiθ/Nf U + U †e−iθ/Nf

)

ds
, (2.14)

where we have made use of Tr [∂µUU †] = 0 to simplify the chiral versions of eqs. (2.7),

(2.8).

In the following, we will find it useful to generalize the notation somewhat from the

standard SU(3) case introduced above. Let Nv ≡ 3 be the number of valence flavours,

and Nf the number of degenerate sea flavours in the chiral Lagrangian. The standard case

corresponds to Nf = Nv, but one can also envisage other interesting situations, for instance

Nf = 4 [20], or Nf → 0. We note that the simplified forms in eqs. (2.11), (2.13) only apply

for Nf = Nv; in general, the combinations in eqs. (2.7), (2.8) need to be employed (the

generalizations of these combinations to arbitrary Nv, Nf are summarised in appendix A).

In the remainder of this section we have in mind the case Nf = Nv but the formulae

are written in a way which will be useful in appendix C, where we analyse the situation

Nf 6= Nv.

The principal strategy now is to construct three-point functions by correlating Hw with

two left-handed flavour currents on the QCD side, and to match to predictions from χPT

for the same objects. In QCD, the left-handed flavour current can formally be defined as

Ja
µ ≡ ψ̄T aγµP−ψ , (2.15)

where T a is a traceless generator of the valence group SU(Nv), and all colour, flavour, and

spinor indices are assumed contracted. Note that Ja
µ defined this way is formally purely

imaginary.1

The two and three-point correlation functions between the left-handed currents and

the weak operators, averaged over the spatial volume, now read [15]:

Tr [T aT b]C(x0) ≡
∫

d3x
〈

Ja
0 (x)Jb

0(0)
〉

, (2.16)

[CR]ab(x0, y0) ≡
∫

d3x

∫

d3y
〈

Ja
0 (x)OR(0)Jb

0(y)
〉

, (2.17)

1The convention in eq. (2.15) differs by a factor i from that in ref. [19], but agrees with the convention of

refs. [17, 20]. We use this “unphysical” convention since it removes a number of unnecessary overall minus

signs from the χPT predictions.

– 5 –



J
H
E
P
1
0
(
2
0
0
6
)
0
6
9

1/F
2
L

3
1/L F M

1/F
2
L

3

1/L

F

1/T

ε

δ

p

Figure 1: The different regimes of chiral perturbation theory, given a fixed spatial extent L of the

box, according to ref. [45]. Here T is the temporal extent of the box and M the pseudoscalar mass.

It is assumed that L À 1/F .

where the index R refers to the representation.

On the χPT side, the operator corresponding to eq. (2.15) becomes, at leading order

in the momentum expansion,

J a
µ =

F 2

2
Tr

[

T aU∂µU †
]

. (2.18)

The two-point correlation function C(x0) is defined (apart from contact terms) by

Tr [T aT b] C(x0) =

∫

d3x
〈

J a
0 (x)J b

0 (0)
〉

, (2.19)

and the three-point correlation function we are interested in, reads (again apart from

contact terms)

[CR]ab(x0, y0) ≡
∫

d3x

∫

d3y
〈

J a
0 (x)OR(0)J b

0 (y)
〉

. (2.20)

Our task is to compute the objects in eqs. (2.19), (2.20) under certain circumstances, to

be specified in the next section.

3. Regimes of chiral perturbation theory

Given a fixed spatial extent L À 1/F of the box, several different kinematical regimes can

be identified in χPT, leading to various computational procedures [45]. The situation is

summarised in figure 1. We will here be interested in the p- and ε-regimes; the δ-regime

(corresponding to small but elongated boxes) is also relevant in principle, but quite tedious

to handle in practice [45], and thus preferably avoided.
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3.1 p-regime

In the p-regime, the quark mass is large enough to ensure that

mΣV À 1 . (3.1)

It follows from this condition that the Goldstone field ξ, defined through U = exp(2iξ/F ),

behaves effectively as a small quantity, and can be expanded in. Chiral corrections are

obtained as an expansion in (M/F )2 and 1/(FL)2, where M2 ≡ 2mΣ/F 2. The power-

counting rules in this regime count both of these expansion parameters at the same order:

M ∼ p , L ∼ 1

p
, (3.2)

where p is assumed small, p ¿ F . The temporal extent T can in principle be small or

large, as long as T >∼ 1/p. Of course, it is also possible to send L → ∞ in the p-regime

expressions. The situation is illustrated in figure 1.

Inserting the Taylor-series of U into eq. (2.9), the propagator becomes
〈

ξur(x) ξvs(y)
〉

=
1

2

[

δusδvrG(x − y;M2) − δurδvsE(x − y;M2)
]

, (3.3)

where

G(x;M2) =
1

V

∑

n∈Z4

eip·x

p2 + M2
, p ≡ (p0,p) ≡ 2π

(n0

T
,
n

L

)

, (3.4)

and V ≡ TL3 is the volume. Here we have also set θ = 0, as is usually done in the

p-regime. In the unquenched case, E(x;M2) = G(x;M2)/Nf , but we keep everywhere

E(x;M2) completely general. The reason is that then the form of eq. (3.3) is general enough

to contain also the propagator of the replica formulation of quenched chiral perturbation

theory [46, 13].

For future reference and as an example of a NLO result in the p-regime, we consider

the two-point correlation function in eq. (2.19). The result can be written as

C(x0) =
F 2

2

{[

1 − NfG(0;M2)

F 2
+

8M2

F 2
(NfL4 + L5)

]

M2P (x0) −
Nf

F 2

dG(0;M2)

dT

+

[

E(0;M2)

F 2
− 8M2

F 2
(NfL4 + L5 − 2NfL6 − 2L8)

]

M2 d

dM2

[

M2P (x0)
]

}

, (3.5)

where (for |x0| ≤ T )

P (x0) ≡
∫

d3xG(x;M2) =
1

T

∑

p0

eip0x0

p2
0 + M2

=
cosh[M(T/2 − |x0|)]

2M sinh[MT/2]
, (3.6)

while

G(0;M2) ≡ G∞(M2) + GV (M2) , (3.7)

where G∞(M2) is the infinite-volume value,2

G∞(M2) ≡
∫

ddp

(2π)d
1

p2 + M2
, (3.8)

2The divergence of G∞(M2) for d ≈ 4 cancels against those in the Li’s [43], cf. eqs. (B.17), (B.31).
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and the (finite) function GV (M2) incorporates all the volume dependence [47],3

GV (M2) =
1

(4π)2

∫ ∞

0

dλ

λ2
e−λM2

∑

n∈Z4

(

1 − δ
(4)
n,0

)

exp
[

− 1

4λ

(

T 2n2
0 + L2|n|2

)]

. (3.9)

For MV
1

4 À 1, the finite-volume effects are exponentially small, and we can set GV = 0.

3.2 ε-regime

In the ε-regime, the natural dimensionless variable is µ ≡ mΣV . The power counting rules

are now

mΣ ∼ ε4 , L ∼ 1

ε
, T ∼ 1

ε
, (3.10)

where ε is assumed small, ε ¿ F . Of course, it is also possible to send m → 0 in the

ε-regime expressions. Hence the parameter µ is parametrically of up to order unity. In

this regime, the Goldstone boson zero-mode U0, defined by writing U = exp(2iξ̄/F )U0,

where ξ̄ has non-zero momenta only, dominates the dynamics, and needs to be treated

non-perturbatively. Consequently, gauge field topology plays an important role [48], and

it is useful to give the predictions in sectors of a fixed topological charge ν.

As an example, the two-point correlation function C(x0) of eq. (2.19) becomes [49, 14,

19]

C(x0) =
F 2

2T

[

1 +
Nf

F 2

(

β1√
V

− T 2k00

V

)

+
2T 2µ

F 2V
σν(µ)h1(x̂0)

]

, (3.11)

where x̂0 ≡ x0/T , and the constants β1 and k00 are related to the (dimensionally regu-

larised) value of

Ḡ(x) ≡ 1

V

∑

n∈Z4

(

1 − δ
(4)
n,0

)eip·x

p2
, (3.12)

by

Ḡ(0) ≡ − β1√
V

, T
d

dT
Ḡ(0) ≡ T 2k00

V
. (3.13)

Introducing ρ ≡ T/L and

α̂p(l0, li) ≡
∫ 1

0
dt tp−1

[

S
(

l20/t
)

S3
(

l2i /t
)

− 1
]

, (3.14)

where S(x) is an elliptic theta-function, S(x) =
∑∞

n=−∞ exp(−πxn2) = ϑ3(0, exp(−πx)),

a numerical evaluation of these coefficients is possible through (see, e.g., refs. [47, 49])

β1 =
1

4π

[

2 − α̂−1

(

ρ
3

4 , ρ−
1

4

)

− α̂−1

(

ρ−
3

4 , ρ
1

4

)]

, (3.15)

k00 =
1

12
− 1

4

∑

n6=0

1

sinh2(πρ|n|)
. (3.16)

3In ref. [47] the function GV was denoted by g1.
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Figure 2: The NLO graphs for C27 in the p-regime. Lines denote meson propagators, an open square

the left-handed current, an open circle the weak operator, and four-point interactions with no symbol

and with a closed circle the “kinetic” and “mass” terms in the chiral Lagrangian, respectively.

Diamonds indicate QCD and weak interaction O(p4) low-energy constants.

Furthermore, σν(µ) ≡ Nf
−1d{ln det[Iν+j−i(µ)]}/dµ, where the determinant is taken over an

Nf ×Nf matrix, whose matrix element (i, j) is the modified Bessel function Iν+j−i [50, 48].

The function h1(τ) appearing in eq. (3.11) reads (for |τ | ≤ 1)

h1(τ) ≡ 1

2

[

(

|τ | − 1

2

)2

− 1

12

]

. (3.17)

3.3 Further remarks

In the following, we carry out computations according to the p and ε-countings as outlined

above. Other recent work for related observables has made use of the p-regime, with

T À L [51 – 53]. There have also been extensive NLO computations at infinite volume [54],

which is a special limit of the p-regime.

Note that if 1/FL ¿ 1 as our power-counting rules assume, and we consider an

observable that is independent of the topological charge ν, then the ε and p-regimes should

in principle be continuously connected to each other (cf. figure 1). Concretely, for ML ¿ 1

and T ∼ L, eq. (3.5) goes over into eq. (3.11) with µ À 1, in which limit the dependence of

eq. (3.11) on ν disappears. Whether such a crossover takes place in practice remains to be

inspected for each observable separately, and gives some feeling concerning the convergence

of the χPT computation, i.e., whether 1/FL ¿ 1 is satisfied.

4. The ∆I = 3/2 operator

We now address the determination of g27, considered previously in the ε-regime [19].

4.1 p-regime

The graphs entering the computation of eq. (2.20) at next-to-leading relative order in the

p-regime are shown in figure 2, with the weak operator O27 to be taken from eq. (2.11).

– 9 –
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The result can be written in the form

[C27]
ab(x0, y0) = ∆ab

27

[

C(x0)C(y0) + D27(x0, y0)
]

, (4.1)

where (for Nv = 3)

∆ab
27 =

3

5
T
{a
ds T b}

uu +
2

5
T {a

us T
b}
du . (4.2)

As an example, choosing kaon and pion type currents, we could take

T a
ij ≡ δiuδjs ⇔ Ja

0 = ūγ0P−s , (4.3)

T b
ij ≡ δidδju ⇔ Jb

0 = d̄γ0P−u , (4.4)

and then

∆ab
27 =

2

5
. (4.5)

Given the result for C(x0) in eq. (3.5), the only further missing ingredient in eq. (4.1)

is D27(x0, y0). We obtain

D27(x0, y0) = −F 2

4

{

M2

T

d2G(0;M2)

dM2dT
+ M2 dG(0;M2)

dT

[

P (x0) + P (y0)
]

+

+2M4G(0;M2)P (x0)P (y0) −
1

2
M4P (x0 − y0)

[

B(x0) + B(y0)
]

+

+M4

∫ T

0
dτ P ′(τ − x0)P

′(τ − y0)B(τ)

}

, (4.6)

where the new object B(x0) is defined as (for |x0| < T )

B(x0) =

∫

d3x
[

G(x;M2)
]2

=
1

L3

∑

p

[

cosh[E(T/2 − |x0|)]
2E sinh[ET/2]

]2
∣

∣

∣

∣

∣

E≡
√

M2+p2

. (4.7)

The expression in eq. (4.6) is, as such, ultraviolet divergent: in dimensional regulariza-

tion in d = 4 − 2ε dimensions, the third and the last terms on the right-hand side contain

poles in ε. Denoting λ ≡ −1/32π2ε, we can write

D27(x0, y0) = Dr
27(x0, y0) + F 2λ

[1

2
M4P ′(x0)P

′(y0) − M6P (x0)P (y0)
]

, (4.8)

where Dr
27(x0, y0) is finite. The divergences get cancelled against the O(p4) low-energy

constants related to weak interactions, as shown in appendix B. As there are a large

number of them, however, it is sufficient for our purposes here to note that the O(p4)

low-energy constants amount to cancelling the 1/ε-divergences in the result and replacing

the corresponding MS scheme scale parameter µ̄ by two different physical scales, Λ for the

coefficient of P (x0)P (y0) and Λ′ for the coefficient of P ′(x0)P
′(y0).

For practical applications, it is convenient to normalise the three-point correlator by

dividing with two two-point correlators:

[C27]
ab
norm(x0, y0) ≡

[C27]
ab(x0, y0)

C(x0)C(y0)
= ∆ab

27

[

1 +
D27(x0, y0)

C(x0)C(y0)

]

≡ ∆ab
27

[

1 + R27(x0, y0)
]

. (4.9)
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Figure 3: The function [C27]
ab

norm(−T/3, y0). The parameters are: Nf = 3, F = 93MeV, L = 2 fm,

T/L = 2, Λ = 1000MeV.
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Figure 4: The values of [C27]
ab
norm(−T/3, T/3). The parameters are: Nf = 3, F = 93MeV, L = 2 fm

(left), L = 4 fm (right), T/L = 2, Λ = (500 − 2000)MeV.

The function R27(x0, y0) is then trivially obtained from eqs. (4.6) and (3.5); in eq. (3.5), it

is even enough to keep the leading order contribution only, since D27(x0, y0) gets generated

only at NLO.

As an example, the function [C27]
ab
norm(−T/3, y0) is plotted in figure 3 as a function of

y0, for the index choice in eq. (4.5) (solid line). The values of [C27]
ab
norm(−T/3, T/3) are

shown in figure 4, as a function of ML (the region bounded by solid lines). In these plots,

the effects of the weak LECs have been collected to a single scale Λ = Λ′ appearing inside

the logarithms, and the scale has been varied in a wide range, to indicate the size of the

uncertainty related to the unknown higher order LECs.
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We would like to stress at this point that the p-regime results are parametrically

valid only in the range ML>∼ 1/FL: for generic observables, the contributions of the

Goldstone zero-modes become dominant if this inequality is not satisfied, and need to

be resummed, leading to the rules of the ε-regime. It turns out [20], however, that in the

normalised observable [C27]
ab
norm(x0, y0) that we have considered here, the contributions from

the Goldstone zero-modes cancel out at this order. Therefore the result can in fact formally

be expanded as a Taylor-series in (ML)2, with the zeroth order term agreeing with the

result of the ε-regime (see below). Still, one has to keep in mind that the Taylor-expanded

result only needs to reproduce the correct mass dependence in the range ML>∼ 1/FL.

Let us finally briefly touch the conventional limit of large volumes. We assume x0 =

−|x0|, y0 = |y0|, such that the charges are on opposite sides of the operator. Then P (x0) =

exp(−M |x0|)/2M and P ′(x0)P
′(y0) = −M2P (x0)P (y0). In other words, the distinction

disappears between the two structures getting contributions from the higher order LECs

(cf. eq. (4.8)), just as would happen if a partial integration could be carried out with

respect to the position of the weak operator. Consequently, only a single combination of

LECs appears, and the corresponding effects can be collected into a single scale Λ. We

obtain

R27(x0, y0) =
M2

(4πF )2

[

3 ln
Λ2

M2
+ 2 − e−2M |x0|φ(2M |x0|) − e−2M |y0|φ(2M |y0|)

]

, (4.10)

where

φ(x) ≡
∫ ∞

0
dz z

1

2 e−xz

√
2 + z

1 + z

[

1

2 + z
+

1

1 + z
− 2

]

. (4.11)

The x0 and y0-dependences in eq. (4.10) are very small in practice. As seen in figure 4

(dotted line), one needs to go to volumes as large as ML>∼ 5 in order for the simple

infinite-volume approximation to be accurate for this observable.4

4.2 ε-regime

The ε-regime results for D27(x0, y0) were derived in ref. [19] but, for completeness and

future reference, we briefly reinstate them here. For D27 in eq. (4.1) one obtains

D27(x0, y0) = − F 2

2T 2

(

1 + T
d

dT

)

Ḡ(0) , (4.12)

and, using eq. (3.13) as well as the leading-order part of eq. (3.11), the ratio in eq. (4.9)

becomes

R27(x0, y0) =
2

(FL)2

[

ρ−
1

2 β1 − ρ k00

]

, (4.13)

where ρ = T/L. Note that this result is independent of the topological charge ν, although

computed in a fixed topological sector.

The ε-regime prediction for the function [C27]
ab
norm(−T/3, y0) is plotted in figure 3 as a

function of y0, for the index choice in eq. (4.5) (dashed line). The values of [C27]
ab
norm(−T/3,

T/3) are shown in figure 4, as a function of µ (dashed line).

4Note that finite-volume corrections depend on the observable in question; in particular, the finite-volume

effects that we find are much larger than those in typical two-point correlation functions.
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4.3 Further remarks

Let us inspect figure 4(left), around the region ML ∼ 1.5, or µ ∼ 2.0. Moving to smaller

values of µ, the ε-regime becomes more accurate, while at larger ML, the p-regime should

be the correct procedure. But which result represents better the truth at this intermediate

point, where both countings are in principle parametrically applicable?

Let us note that for the semi-realistic parameters used in figure 4(left), 1/FL ≈ 1.1.

Therefore, the parametric rules we have assumed are at best satisfied by a narrow margin.

Consequently, higher order corrections in χPT can be important. In the absence of an

explicit computation thereof, it remains to be inspected phenomenologically which of the

predictions reproduces better the volume and mass dependences of the simulation results

in this regime.

We end with a small remark on quenching. Employing the replica formulation [46,

13] of quenched chiral perturbation theory [55, 56], the only changes with respect to the

unquenched situation are that we need to replace the propagator of eq. (3.3) through

E(x;M2) ≡ α

2Nc
G(x;M2) +

m2
0 − αM2

2Nc
H(x;M2) , (4.14)

H(x;M2) ≡ 1

V

∑

n∈Z4

eip·x

(p2 + M2)2
, (4.15)

where new parameters related to axial singlet field, m2
0/2Nc, α/2Nc, have been introduced;

and take Nf → 0 at the end of the computation. Given that our results for [C27]
ab
norm(x0, y0)

are completely independent of Nf and of the function E(x;M2), however, there is no change

with respect to the unquenched theory for this observable [19].

5. The ∆I = 1/2 operators

In the case of the ∆I = 1/2 transitions, two operators with the right symmetries appear in

eq. (2.10). This means that if we have measured some correlation function on the QCD side,

with an operator O8 transforming in the octet representation, then this is to be matched

to a linear combination of correlation functions on the χPT side:
∫

d3x

∫

d3y
〈

Ja
0 (x)h8 O8(0)Jb

0(y)
〉

≡ g8 [C8]
ab(x0, y0) + g′8 [C′

8]
ab

(x0, y0) , (5.1)

where h8 is the Wilson coefficient, and g8, g
′
8 are the partial contributions from h8 O8 to

the corresponding LECs. We thus have to consider two different classes of correlators on

the χPT side, in order to be able to disentangle the coefficients of these operators.

5.1 p-regime

For the operator O8 of eq. (2.13), the graphs entering the computation of the correlation

function in eq. (2.20) are the same as in figure 2, and the correlation function has the same

form as in eq. (4.1):

[C8]
ab(x0, y0) ≡ ∆ab

8

[

C(x0) C(y0) + D8(x0, y0)
]

, (5.2)
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where

∆ab
8 =

1

2
{T a, T b}ds , (5.3)

and the function C(x0) is still given by eq. (3.5). For the matrices T a, T b in eqs. (4.3),

(4.4), the group theory factor evaluates to

∆ab
8 =

1

2
. (5.4)

The function D8(x0, y0) reads

D8(x0, y0) = −Nv

2
D27(x0, y0) +

+ F 2M2 Nv + 2

8

{

[

G(0;M2) − 2E(0;M2)
]

P ′(x0)P
′(y0) +

+M2P (x0 − y0)
[

B̃(x0) + B̃(y0) −
1

2
B(x0) −

1

2
B(y0)

]

+

+P ′(x0 − y0)
[

B̃′(y0) + B̃0(y0) +
1

2
B′(x0) − B̃′(x0) − B̃0(x0) −

1

2
B′(y0)

]

+

+M2

∫ T

0
dτ

[

M2B(τ) − 2M2B̃(τ) − B̃00(τ)
]

P (τ − x0)P (τ − y0)

}

. (5.5)

The new objects appearing here are defined as

B̃(x0) ≡
∫

d3xG(x;M2)E(x;M2) , (5.6)

B̃0(x0) ≡
∫

d3x
[

∂0G(x;M2)E(x;M2) − G(x;M2)∂0E(x;M2)
]

, (5.7)

B̃00(x0) ≡
∫

d3x
[

∂2
0G(x;M2)E(x;M2) − G(x;M2)∂2

0E(x;M2)
]

. (5.8)

We recall that in the unquenched theory, E(x;M2) = G(x;M2)/Nf , and B̃(x0) thus agrees

with B(x0)/Nf as defined through eq. (4.7), while B̃0(x0), B̃00(x0) vanish.

Eq. (5.5) again contains divergences: in the unquenched theory,

D8(x0, y0) = Dr
8(x0, y0) + F 2λ

[(1

2
− Nv + 2

2Nf

)

M4P ′(x0)P
′(y0) +

+
(Nv − 2

4
+

Nv + 2

2Nf

)

M6P (x0)P (y0)
]

, (5.9)

where λ ≡ −1/32π2ε, and Dr
8(x0, y0) is finite. The cancellation of these divergences against

the O(p4) LECs is demonstrated in appendix B.

Following eq. (4.9), it is convenient to define a normalised correlation function by

dividing with two current-current correlators, and we thus obtain

[C8]
ab
norm(x0, y0) ≡

[C8]
ab(x0, y0)

C(x0) C(y0)
= ∆ab

8

[

1 + R8(x0, y0)
]

. (5.10)

Again, it is enough to use the leading order forms for the functions C(x0), C(y0) in the

definition of R8(x0, y0), since D8(x0, y0) gets generated only at NLO.
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Figure 5: Left: the function [C8]
ab

norm(−T/3, y0). Right: the function [C′

8]
ab

norm(−T/3, y0). The

parameters are: Nf = 3, F = 93MeV, L = 2 fm, T/L = 2, Λ = 1000MeV.

In the infinite-volume limit, the distinction between the various types of divergences

in eq. (5.9) disappears, as before. Collecting the corresponding LECs to a single scale Λ,

we obtain (in the unquenched case)

R8(x0, y0) = −Nv

2
R27(x0, y0) +

Nv + 2

2

(

1 − 2

Nf

)

M2

(4πF )2

[

2 ln
Λ2

M2
+ 1 +

+e−2M |x0|Ξ(2M |x0|) + e−2M |y0|Ξ(2M |y0|)
]

, (5.11)

where R27(x0, y0) is from eq. (4.10), and

Ξ(x) ≡
∫ ∞

0
dz z

1

2 e−xz

√
2 + z

1 + z

[

1

2 + z
− 1

1 + z
+ 2 + 4z

]

. (5.12)

For the correlator C′
8 the graphs are the same as in figure 2 except that, for a vacuum

angle θ = 0, the weak operator O′
8 only couples to an even number of Goldstone modes.

The result is now of the form

[C′
8]

ab
(x0, y0) ≡ ∆ab

8 D′
8(x0, y0) , (5.13)

where

D′
8(x0, y0) =

F 4

2

{[

1 − NfG(0;M2)

F 2
+

E(0;M2)

F 2
M2 d

dM2

]

[

M2P ′(x0)P
′(y0)

]

+

+
NfM

4

2F 2

∫ T

0
dτ

[

P ′(τ − x0)P
′(τ − y0) + M2P (τ − x0)P (τ − y0)

]

B(τ) −

−2M4

F 2

∫ T

0
dτ P ′(τ − x0)P

′(τ − y0)B̃(τ) − Nf

2F 2

M2

T

dG(0;M2)

dM2dT

}

. (5.14)
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Figure 6: The function [C8]
ab

norm(−T/3, T/3). The parameters are: Nf = 3, F = 93MeV, L = 2 fm

(left), L = 4 fm (right), T/L = 2, Λ = (500 − 2000)MeV.

Separating the divergent parts, we get (in the unquenched case)

D′
8(x0, y0) = D′r

8 (x0, y0) + F 2λ
[(

−3Nf

2
+

3

Nf

)

M4P ′(x0)P
′(y0) −

Nf

2
M6P (x0)P (y0) +

+
1

Nf
M6 d

dM2

(

P ′(x0)P
′(y0)

)]

, (5.15)

where D′r
8 (x0, y0) is finite. The cancellation of divergences is demonstrated in appendix B.

If we want to disentangle the dependences following from the operators O8 and O′
8 in

a given lattice measurement, we are lead to compare the contributions from O′
8 with the

normalised correlation function in eq. (5.10). Therefore, we define

[C′
8]

ab
norm(x0, y0) ≡

[C′
8]

ab(x0, y0)

C(x0) C(y0)
. (5.16)

Treating UV-divergences and higher order LECs as before, the correlation functions

[C8]
ab
norm(−T/3, y0) and [C′

8]
ab
norm(−T/3, y0) are plotted in figure 5 as a function of y0 (solid

lines). The two correlators are observed to have a rather different dependence on y0, so it is

in principle possible to disentangle their contributions in a given lattice measurement. The

values of [C8]
ab
norm(−T/3, T/3) and [C′

8]
ab
norm(−T/3, T/3) as a function of ML are illustrated

in figures 6, 7, respectively (regions bounded by solid lines).

It is important to stress that, for ML → 0, the correction of relative order 1/F 2 in

eq. (5.14) diverges as ∼ 1/F 2M2V . This indicates in a concrete way that the p-regime

computation is no longer reliable for ML ¿ 1/FL, and we need to turn to the ε-regime.

Let us again end by commenting on the conventional limit of large volumes. Assuming

x0 = −|x0|, y0 = |y0|, and inserting the unquenched value of E(x;M2), we obtain for the

normalised case

[C′
8]

ab
norm(x0, y0) = −{T a, T b}ds

{

1 +
M2

(4πF )2

[

−Nf

(

1 + ln
Λ2

M2

)

− 2

Nf
ln

Λ2

M2
−
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Figure 7: The function [C′

8]
ab

norm(−T/3, T/3). The parameters are: Nf = 3, F = 93MeV, L = 2 fm

(left), L = 4 fm (right), T/L = 2, Λ = (500 − 2000)MeV.

Figure 8: The leading-order graphs for [C′

8]
ab

(x0, y0) in the ε-regime. An open square denotes the

left-handed current, an open circle the weak operator, and a filled circle a mass insertion.

−Nf

2

{

e−2M |x0|∆(2M |x0|) + e−2M |y0|∆(2M |y0|)
}

+

+
2

Nf

{

e−2M |x0|Υ(2M |x0|) + e−2M |y0|Υ(2M |y0|)
}

]}

, (5.17)

where

∆(x) ≡
∫ ∞

0
dz z

1

2 e−xz

√
2 + z

1 + z

[

2

2 + z

]

, (5.18)

Υ(x) ≡
∫ ∞

0
dz z

1

2 e−xz

√
2 + z

1 + z

[

1

2 + z
+

1

1 + z

]

. (5.19)

This result is plotted in figure 7 with dotted lines. We observe again how only values

ML>∼ 5.0 guarantee that finite-volume effects are small for our three-point observables.

5.2 ε-regime

We finally move to the ε-regime. For C8 the graphs are the same as for C27, as depicted in

figure 3 of ref. [19]. The correlator retains the form in eq. (5.2), with ∆ab
8 from eq. (5.3),

C(x0) from eq. (3.11), and D27(x0, y0), appearing as in eq. (5.5), from eq. (4.12). The

order of magnitude of the leading term in [C8]
ab(x0, y0) is O(ε2), and the NLO term is

O(ε4), while the terms beyond D27(x0, y0) in eq. (5.5) are formally O(ε6), so that the
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corresponding graph (the sixth in figure 2) can be ignored in the ε-regime. Therefore, all

information is in the ε-regime version of D27(x0, y0). To be explicit, the normalised form

of eq. (5.10) becomes

[C8]
ab
norm(x0, y0) = ∆ab

8

[

1 − Nv

(FL)2

(

ρ−
1

2 β1 − ρ k00

)

]

. (5.20)

Let us stress, in particular, that [C8]
ab
norm(x0, y0) is independent of topology and quenching

at this order, just like [C27]
ab
norm(x0, y0). (However, as discussed at the end of appendix C,

quenching does lead to the appearance of additional LECs [32] that need to be disentan-

gled.)

Let us then address C′
8. Given that the ε-regime computation is to be carried out

at fixed topology, the operator O′
8 needs now to be considered in the full generality of

eq. (2.14), i.e., with a non-vanishing vacuum angle θ, unlike in the p-regime. Therefore O′
8

can also couple to an odd number of Goldstone fields. On the other hand, it is easy to see

that the tree-level graphs (cf. figure 8) are already of order O(ε4). Comparing with C8, it

is therefore enough to restrict to the leading order. We find

[C′
8]

ab
(x0, y0) =

µF 2

2V

{

{T a.T b}ds

[

σν(µ)h′
1(x̂0)h

′
1(ŷ0) +

+
µ

1 − N2
f

{

σ′
ν(µ) + Nfσ

2
ν(µ) + N2

f

σν(µ)

µ
− Nf

(

1 +
ν2

µ2

)}

h1(x̂0 − ŷ0)

]

+

+[T a, T b]ds
ν

µ

{

h′
1(x̂0 − ŷ0)[h

′
1(x̂0) + h′

1(ŷ0)] + h1(ŷ0) − h1(x̂0)
}

}

, (5.21)

where h1 is from eq. (3.17). The corresponding normalised form reads

[C′
8]

ab
norm(x0, y0) =

4T 2

F 4
[C′

8]
ab

(x0, y0) . (5.22)

This result is to be used in combination with eq. (5.20), in order to disentangle the two

terms on the right-hand side of eq. (5.1).

Unlike eq. (5.20), the expressions in eqs. (5.21), (5.22) get modified in the quenched

theory, because they contain Goldstone zero-mode integrals. Proceeding as in ref. [16], we

find

[C′
8]

ab
q (x0, y0) =

µF 2

2V

{

{T a.T b}ds

[

σqν(µ)h′
1(x̂0)h

′
1(ŷ0) + µσ′

qν(µ)h1(x̂0 − ŷ0)
]

+

+[T a, T b]ds
ν

µ

{

h′
1(x̂0 − ŷ0)[h

′
1(x̂0) + h′

1(ŷ0)] + h1(ŷ0) − h1(x̂0)
}

}

, (5.23)

where the subscript q refers to the quenched theory, and [57]

σqν(µ) ≡ µ
[

Iν(µ)Kν(µ) + Iν+1(µ)Kν−1(µ)
]

+
ν

µ
, (5.24)

where Iν ,Kν are modified Bessel functions. Note that eq. (5.23) could also be obtained

from eq. (5.21) by just naively setting Nf → 0 and replacing σν → σqν .
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O(ε4) :

O(ε6) :

Figure 9: The graphs contributing to [K′

8]
a
(x0). The notation is as in figure 8, with additionally

a cross denoting a “measure term” (cf. ref. [9]).

Since the functions [C8]
ab(x0, y0) and [C′

8]
ab(x0, y0) are not identical, a precise measure-

ment of the time-dependence of the correlation function of the left-hand side of eq. (5.1)

would in principle make it possible to disentangle the contributions to g8, g
′
8. In particular,

as shown in figure 5, any dependence of the correlation functions on ν arises at this order

through the operator O′
8. In practice, however, the problem emerges that it may not be

easy to obtain such a high accuracy that the two LECs could reliably be determined from

a single observable. Therefore, it may be beneficial to define another probe as well, such

that the LECs can be disentangled with better confidence. We now show how this can be

done.

5.3 Direct determination of g′8

In order to determine g′8, we consider the correlator

[KR]a(x0) ≡
∫

d3x
〈

Ja
0 (x)OR(0)

〉

, (5.25)

on the side of QCD, and correspondingly

[KR]a(x0) ≡
∫

d3x
〈

J a
0 (x)OR(0)

〉

(5.26)

on the χPT side. Note that this correlation function is not available in the conventional

p-regime setup (i.e. with θ = 0), because it is odd in charge conjugation.

We have computed both [K8]
a(x0) and [K′

8]
a(x0) at NLO in the ε-regime. Paramet-

rically, the orders of magnitude of the LO and the NLO graphs are O(ε4) and O(ε6),

respectively. We find, however, that at this order [K8]
a(x0) vanishes exactly, like in the

p-regime.

On the other hand, [K′
8]

a(x0) does not vanish. The graphs are shown in figure 9. We

find

[K′
8]

a
(x0) = −T a

ds

νF 2

V

{

h′
1(x̂0)

[

1+

(

1

Nf
−Nf

)

Ḡ(0)

F 2

]

+h′
2(x̂0)

2T 2

F 2V

[

µσν(µ)+
1

Nf

]

}

,

(5.27)

where Ḡ(x) is from eq. (3.12), and (for |τ | ≤ 1)

h2(τ) ≡ 1

24

[

τ2 (|τ | − 1)2 − 1

30

]

. (5.28)
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0.0 0.2 0.4 0.6 0.8 1.0
x

0
/T

-2.0

-1.0

0.0

1.0

2.0

[K
8’ 

] no
rm

 (
x 0)

ν = + 1

ν = + 2

ν = 0

ν = − 1

ν = − 2

Figure 10: The function [K′

8]norm(x0) as a function of x0 and ν. The other parameters are: Nf = 3,

F = 93MeV, µ = 2.0, L = 2 fm, T/L = 2.

The result is illustrated in figure 10, after normalisation through

L3[K′
8]

a(x0)

C(x0)
≡ T a

ds[K′
8]norm(x0) . (5.29)

Repeating the same steps in the quenched theory, we find

[K′
8]

a
q(x0) = −T a

ds

νF 2

V

{

h′
1(x̂0)

[

1 +
α

2Nc

Ḡ(0)

F 2
+

m2
0

2Nc

H̄(0)

F 2

]

+

+
2T 2

F 2V

[

(

µσqν(µ) +
α

2Nc

)

h′
2(x̂0) −

m2
0T

2

2Nc
h′

3(x̂0)

}

, (5.30)

where H̄(x) and h3(τ) (for |τ | ≤ 1) are defined through

H̄(x) ≡ 1

V

∑

n∈Z4

(

1 − δ
(4)
n,0

) eip·x

(p2)2
, (5.31)

h3(τ) ≡ 1

720

[

τ2 (|τ | − 1)2
(

τ2 − |τ | − 1

2

)

+
1

42

]

. (5.32)

The value of H̄(0) is given by [47]

H̄(0) = β2 +
µ−2ε

(4π)2

[

1

ε
+ ln

(

µ̄2V 1/2
)

+ 1 + O(ε)

]

, (5.33)

where ln µ̄2 ≡ ln µ2 + ln 4π − γE , and (with α̂ from eq. (3.14))

β2 =
1

(4π)2

[

α̂0

(

ρ
3

4 , ρ−
1

4

)

+ α̂−2

(

ρ−
3

4 , ρ
1

4

)

− 3

2
− ln(4π) + γE

]

. (5.34)

The UV-divergence in eq. (5.33) is cancelled by Σ (cf. eq. (2.14)), which is to be treated as

a bare parameter in the quenched theory [58].

– 20 –



J
H
E
P
1
0
(
2
0
0
6
)
0
6
9

To summarise, we now have a method to disentangle the two contributions related

to the LECs g8, g
′
8: by considering [K ′

8]norm(x0), we can first match for g′8. Then the

corresponding term can be subtracted from the right-hand side of eq. (5.1), and we are

able to determine g8. As illustrated in figure 5, a cross-check is that the dependence on ν

should have disappeared.

5.4 Further remarks

The remarks that can be made on the convergence of the ε and p-regime computations of C8

and C′
8 are largely the same as for C27 in section 4.3. Indeed, for 1/FL ¿ 1, there could be a

non-vanishing overlap, i.e. a regime where both the p-regime and the ε-regime expressions

are valid. For the more realistic case 1/FL ∼ 1, on the other hand, this is unlikely to

happen. It would be tempting to read from figure 7 that the p-regime expression works

in the range ML>∼ 2.0, and the ε-regime expression in the range µ <∼ 2.0, but whether this

is really the case remains to be seen once a comparison with lattice simulation results is

available.

Concerning quenching, let us stress that the correlation function [C8]
ab
norm(x0, y0) is

determined in the ε-regime by the same function R27(x0, y0) as [C27]
ab
norm(x0, y0), and is

thus insensitive to quenching at the present order. At the same time, the correlation

functions [C′
8]

ab
norm(x0, y0) and [K′

8]
a
norm(x0) do get modified.

An important point however is the different relevance of the quenched ambiguities of

ref. [32] in the two regimes.5 In general the quenched theory contains spurious operators

with new LECs. Some of these originate from the fact that Nf 6= Nv, a case that is consid-

ered in detail in appendix C, while others are related to the couplings of the axial singlet

field that cannot be integrated out in the quenched limit. The latter modify the terms that

in the full theory would be divergent in the limit Nf → 0. We indeed confirm a rather messy

situation in the p-regime, where many new couplings enter; thus we have not carried out

a systematic study of all quenching effects in our observables in this regime. On the other

hand, the quenching ambiguities are reduced to a minimum at the NLO in the ε-regime,

with apparently only one spurious octet LEC contributing to [C8]
ab
norm(x0, y0). Therefore

certain octet couplings can be determined by matching the lattice simulation results to

[C8]
ab
norm(x0, y0). We elaborate on this issue in more detail in appendix C, particularly

around eq. (C.23).

6. Conclusions

We have addressed in this paper the determination of the O(p2) LECs of the chiral weak

Hamiltonian. As probes we have used the three-point correlation functions between the

weak operators and left-handed flavour currents. We have computed the three-point corre-

lation functions up to next-to-leading order in chiral perturbation theory, both in the ε and

in the p-regimes, for all three operators that appear in the SU(3) chiral weak Hamiltonian.

5We refer here to the ambiguities at the level of the chiral Lagrangian. We assume always that the weak

effective Hamiltonian at the quark level contains an active charm so that no “unphysical” operators appear

in the Operator Product Expansion at the order in the Fermi constant at which we are working.
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While the determination of the LEC g27, which fixes the ∆I = 3/2 amplitude of the

weak decays K → ππ as well as the kaon mixing parameter B̂K in the chiral limit, appears

straightforward, the determination of the LECs fixing the ∆I = 1/2 amplitudes is more

demanding in several respects. Even restricting to the idealised case of full QCD at large

volumes, there are two operators with the same flavour symmetry, while only the coefficient

of one of them, g8, contributes to the physical kaon decays [3, 4]. Therefore it is important

to come up with a setup which makes it possible to remove the contamination from the

other operator in a lattice measurement of the type that we have considered.

We have shown here that this challenge can be met by going to the ε-regime. The two

operators contribute in very different ways to a given three-point correlation function, one

leading to a topology-dependent and the other to a topology-independent result. Moreover,

we have found a two-point correlator that is only sensitive to the “unphysical” LEC and

can be used to fix it. Therefore, it seems possible in principle to disentangle the physical

coefficient g8 from lattice measurements in the ε-regime.

By comparing the ε-regime results with p-regime results in a finite volume, we have

also speculated on the regimes of validity of the two approaches. It appears that for

semi-realistic lattices with a spatial extent of about 2 fm, the ε-regime approach might be

applicable for µ = mΣV <∼ 2.0 and the p-regime for ML>∼ 2.0. In any case, the conventional

infinite-volume formulae are accurate (with errors below 10 — 20%) only at ML>∼ 5.0.

Finally, we have briefly addressed the effect of quenching on the determination of the

∆I = 1/2 observables. New unphysical couplings are in general expected in the effective

chiral theory with respect to the unquenched situation. In the ε-regime we find, however,

that the contamination from these new couplings is minimal at NLO: only one additional

coupling enters our predictions, and we have shown that it is in principle possible to

determine the quenched g8 in spite of these quenching artifacts.
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A. Irreducible representations of the valence group

For completeness, we reiterate in this appendix the main formulae related to irreducible

representations of the valence group SU(Nv), relevant for the operators appearing in the

weak Hamiltonian. We follow the tensor method discussed, e.g., in ref. [59].

Like in the main body of the text, we make a distinction between the valence group

SU(Nv), used to classify the weak operators, and the full flavour symmetry SU(Nf). The
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indices r̄, s̄, ū, v̄, r̃, s̃, ũ, ṽ, r̂, ŝ, û, v̂ are assumed to take values in the valence subgroup only.

We denote by Or̄s̄ūv̄ a generic operator transforming under N∗
v⊗N∗

v⊗Nv⊗Nv of SU(Nv),

and by O′
r̃ũ one transforming under N∗

v ⊗ Nv.

We define the projection operators

(P σ
1 )r̄s̄ūv̄;r̃s̃ũṽ ≡ 1

4
(δr̄r̃δs̄s̃ + σδr̄s̃δs̄r̃)(δūũδv̄ṽ + σδūṽδv̄ũ) , (A.1)

(P σ
2 )r̄s̄ūv̄;r̃s̃ũṽ ≡ δr̄r̃δs̄s̃δūũδv̄ṽ +

1

(Nv + 2σ)(Nv + σ)
(δr̄ūδs̄v̄ + σδr̄v̄δs̄ū)δr̃ũδs̃ṽ

− 1

Nv + 2σ
(δr̄ūδs̄s̃δv̄ṽδr̃ũ + δs̄v̄δr̄r̃δūũδs̃ṽ + σδr̄v̄δs̄s̃δūṽδr̃ũ + σδs̄ūδr̄r̃δv̄ũδs̃ṽ) , (A.2)

(P3)r̄ū;r̃ũ ≡ δr̄r̃δūũ − 1

Nv
δr̄ūδr̃ũ . (A.3)

In addition, Pv is defined to project from SU(Nf) to SU(Nv). The operators denoted by

O27, O8 and O′
8 can now be defined as

[O27]r̄s̄ūv̄ ≡ (P+
2 P+

1 )r̄s̄ūv̄;r̃s̃ũṽ Or̃s̃ũṽ , (A.4)

[O±
8 ]r̄ū ≡ (P3)r̄ū;r̂û(P±

1 )r̂ŝûŝ;r̃s̃ũṽ Or̃s̃ũṽ , (A.5)

[O′
8]r̄ū ≡ (P3)r̄ū;r̃ũ O′

r̃ũ . (A.6)

Note that the contraction over ŝ in eq. (A.5) goes over valence flavours only, and that

additional octet operators (O−
8 ) can appear already at the leading order when Nv 6= Nf .

Instead of a generic operator Or̄s̄ūv̄, practical computations of the type in ref. [60]

involve certain factorised forms, like

[O1]r̄s̄ūv̄ ≡ (Q)ūr̄(R)v̄s̄ , (A.7)

[O2]r̄s̄ūv̄ ≡ (Q)ūs̄(R)v̄r̄ , (A.8)

[O3]r̄s̄ūv̄ ≡ δūr̄(R)v̄s̄ , (A.9)

[O4]r̄s̄ūv̄ ≡ δūs̄(R)v̄r̄ , (A.10)

[O5]r̄s̄ūv̄ ≡ δūr̄δv̄s̄ , (A.11)

[O6]r̄s̄ūv̄ ≡ δūs̄δv̄r̄ . (A.12)

Then projections of the types in eqs. (A.4), (A.5) produce

[P σ
2 P σ

1 O1]r̄s̄ūv̄ = Sσ
r̄s̄ūv̄(Q,R) , [P3P σ

1 O1]r̄ū = T σ
r̄ū(Q,R) ,

[P σ
2 P σ

1 O2]r̄s̄ūv̄ = σSσ
r̄s̄ūv̄(Q,R) , [P3P σ

1 O2]r̄ū = σT σ
r̄ū(Q,R) ,

[P σ
2 P σ

1 O3]r̄s̄ūv̄ = 0 , [P3P σ
1 O3]r̄ū = Uσ

r̄ū(R) ,

[P σ
2 P σ

1 O4]r̄s̄ūv̄ = 0 , [P3P σ
1 O4]r̄ū = σUσ

r̄ū(R) ,

[P σ
2 P σ

1 O5]r̄s̄ūv̄ = 0 , [P3P σ
1 O5]r̄ū = 0 ,

[P σ
2 P σ

1 O6]r̄s̄ūv̄ = 0 , [P3P σ
1 O6]r̄ū = 0 ,

(A.13)

where (introducing the notation Trv (. . .) ≡ Tr (Pv . . .))

Sσ
r̄s̄ūv̄(Q,R) =

1

4

{

Qūr̄Rv̄s̄ + Rūr̄Qv̄s̄ + σ(Qūs̄Rv̄r̄ + Rūs̄Qv̄r̄) −
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− δv̄r̄

Nv + 2σ

[

(QPvR + RPvQ)ūs̄ + σ
(

Qūs̄Trv (R) + Rūs̄Trv (Q)
)]

−

− δūs̄

Nv + 2σ

[

(QPvR + RPvQ)v̄r̄ + σ
(

Qv̄r̄Trv (R) + Rv̄r̄Trv (Q)
)]

−

− σδūr̄

Nv + 2σ

[

(QPvR + RPvQ)v̄s̄ + σ
(

Qv̄s̄Trv (R) + Rv̄s̄Trv (Q)
)]

−

− σδv̄s̄

Nv + 2σ

[

(QPvR + RPvQ)ūr̄ + σ
(

Qūr̄Trv (R) + Rūr̄Trv (Q)
)]

+

+
2(δūs̄δv̄r̄ + δūr̄δv̄s̄)

(Nv + σ)(Nv + 2σ)

[

Trv (QPvR) + σTrv (Q)Trv (R)
]

}

, (A.14)

T σ
r̄ū(Q,R) =

1

4

[

σ(QPvR + RPvQ)ūr̄ + Qūr̄Trv (R) + Rūr̄Trv (Q)
]

−

− δūr̄

2Nv

[

Trv (Q)Trv (R) + σTrv (QPvR)
]

, (A.15)

Uσ
r̄ū(R) =

1

4
(Nv + 2σ)

[

Rūr̄ −
δūr̄

Nv
Trv (R)

]

. (A.16)

Considering, in particular, the operators

∆
(1)
r̄s̄ūv̄ = T

{a
ūr̄ T

b}
v̄s̄ , (A.17)

∆
(2)
r̄s̄ūv̄ = T

{a
ūs̄ T

b}
v̄r̄ − 1

2

(

δūs̄{T a, T b}v̄r̄ + δv̄r̄{T a, T b}ūs̄

)

, (A.18)

∆
(3)
r̄s̄ūv̄ = T

{a
ūs̄ T

b}
v̄r̄ + δūs̄{T a, T b}v̄r̄ + δv̄r̄{T a, T b}ūs̄ , (A.19)

∆
(4)
r̄s̄ūv̄ = δūr̄{T a, T b}v̄s̄ + δv̄s̄{T a, T b}ūr̄ , (A.20)

which appear in the computations of figure 2, and choosing the indices that appear in the

physical operators O27 and O8, we obtain

[P+
2 P+

1 ∆(1)]suud = 2S+
suud(T

a, T b) , [P3P σ
1 ∆(1)]sd = 1

2{T a, T b}ds σ ,

[P+
2 P+

1 ∆(2)]suud = 2S+
suud(T

a, T b) , [P3P σ
1 ∆(2)]sd = 1

2{T a, T b}ds

(

−σ
2Nv

)

,

[P+
2 P+

1 ∆(3)]suud = 2S+
suud(T

a, T b) , [P3P σ
1 ∆(3)]sd = 1

2{T a, T b}ds(σNv + 3) ,

[P+
2 P+

1 ∆(4)]suud = 0 , [P3P σ
1 ∆(4)]sd = 1

2{T a, T b}ds(Nv + 2σ) .

(A.21)

For Nv = 3, the function ∆ab
27 ≡ 2S+

suud(T
a, T b) is shown explicitly in eq. (4.2).

B. Ultraviolet divergences and O(p4) operators

Once we go beyond the order O(p2) in χPT , the number of operators that enter eq. (2.10)

increases dramatically. At the order O(p4), we rewrite the weak Hamiltonian as

Hw ≡ 2
√

2GF VudV
∗
us

{

5

3

[

g27O27 +
∑

i

DiŌ(i)
27

]

+ 2
[

g8O8 + g′8O′
8 +

∑

i

EiŌ(i)
8

]

}

+ H.c. ,

(B.1)

where Ō(i)
27 , Ō(i)

8 are the new operators. For Nf = Nv = 3, (over)complete sets for Ō(i)
27 ,

Ō(i)
8 have been listed in ref. [60]. The use of partial integration identities makes it pos-

sible to reduce the number of operators drastically, leading to the lists commonly used
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in phenomenology [61]; in our case, however, the use of partial integration identities is

not possible, since we consider local operator insertions (i.e. Hw is not integrated over

spacetime).

Generalizing eq. (2.20), we define the correlation functions now with the LECs added,

[C27]
ab(x0, y0) ≡

∫

d3x

∫

d3y
〈

J a
0 (x)

[

g27O27(0) +
∑

i

DiŌ(i)
27 (0)

]

J b
0 (y)

〉

, (B.2)

[C8]
ab(x0, y0) ≡

∫

d3x

∫

d3y
〈

J a
0 (x)

[

g8O8(0) + g′8O′
8(0) +

∑

i

EiŌ(i)
8 (0)

]

J b
0 (y)

〉

. (B.3)

The results can be written in the forms

[C27]
ab(x0, y0)=∆ab

27

{

g27

[

C(x0)C(y0) + D27(x0, y0)
]

+ E27(x0, y0)

}

, (B.4)

[C8]
ab(x0, y0)=∆ab

8

{

g8

[

C(x0)C(y0) + D8(x0, y0)
]

+ g′8D′
8(x0, y0) + E8(x0, y0)

}

, (B.5)

where ∆ab
27 = 2S+

suud(T
a, T b) in the notation of eq. (A.21), and ∆ab

8 = {T a, T b}ds/2.

The list of operators from ref. [60] (modulo certain minus-signs) that can contribute

to C27 at NLO is constituted by the properly projected (cf. appendix A) versions of:

Ō(2)
27 = −(P)ūr̄(P)v̄s̄ , (B.6)

Ō(4)
27 = (Lµ)ūr̄ {Lµ,S}v̄s̄ , (B.7)

Ō(7)
27 = (Lµ)ūr̄ (Lµ)v̄s̄ Tr (S) , (B.8)

Ō(19)
27 = i (Wµµ)ūr̄ (P)v̄s̄ , (B.9)

Ō(20)
27 = − (Lµ)ūr̄ (∂νWµν)v̄s̄ , (B.10)

Ō(21)
27 = − (Lµ)ūr̄ (∂µWνν)v̄s̄ , (B.11)

Ō(24)
27 = − (Wµν)ūr̄ (Wµν)v̄s̄ , (B.12)

Ō(25)
27 = − (Wµµ)ūr̄ (Wνν)v̄s̄ . (B.13)

Here we utilize the notation

S ≡ Uχ† + χU † , P ≡ i
(

Uχ† − χU †
)

, (B.14)

Lµ ≡ U∂µU † , Wµν ≡ 2 (∂µLν + ∂νLµ) , (B.15)

where χ ≡ 2mΣ/F 2 = M2. As stressed in ref. [60], not all of these operators are indepen-

dent, however: equations of motion can be used to eliminate 19, 21, and 25, for instance.

In the following, we keep for generality all the operators.

The contribution from the O(p4)-constants to eq. (B.4) reads

E27(x0, y0) = 4M4P ′(x0)P
′(y0) [D2 + 2D19 − 4D24 − 4D25] +

+ 4M6P (x0)P (y0)

[

D4 +
Nf

2
D7 − D20 − D21 − F 2(NfL4 + L5)

]

. (B.16)
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Taking into account that C(x0) is finite; that D27(x0, y0) contains the divergences specified

in eq. (4.8); that the QCD O(p4) constants contain the divergence (λ ≡ −1/32π2ε)

NfL4 + L5 = NfL
r
4 + Lr

5 +
Nf

4
λ , (B.17)

where Lr
4, Lr

5 are finite; and that the O(p4) constants contain the divergences

D4 = Dr
4 + g27 F 2λ

(Nf + 3

8

)

,

D7 = Dr
7 + g27 F 2λ

(1

4

)

,

D20 = Dr
20 + g27 F 2λ

(1

8

)

,

D24 = Dr
24 + g27 F 2λ

( 1

32

)

, (B.18)

the correlation function C27 in eq. (B.4) can be seen to be finite.

As far as the octet correlation functions are concerned, it is the following types among

the operators listed in ref. [60] that contribute to the correlation function C8 at the order

we are considering:

Ō(1)
8 ≡ −(SS)ds , (B.19)

Ō(2)
8 ≡ −(S)dsTr (S) , (B.20)

Ō(3)
8 ≡ −(PP)ds , (B.21)

Ō(10)
8 ≡ {S,LµLµ}ds , (B.22)

Ō(11)
8 ≡ (LµSLµ)ds , (B.23)

Ō(14)
8 ≡ (LµLµ)dsTr (S) , (B.24)

Ō(33)
8 ≡ i{Wµµ,P}ds , (B.25)

Ō(35)
8 ≡ −{Lµ, ∂νWµν}ds , (B.26)

Ō(36)
8 ≡ −{Lµ, ∂µWνν}ds , (B.27)

Ō(39)
8 ≡ −(WµνWµν)ds , (B.28)

Ō(40)
8 ≡ −(WµµWνν)ds . (B.29)

Again, there are relations between these operators: equations of motion can be used to

eliminate 33, 36 and 40 [60]. For Nf = Nv the contributions from the QCD and weak

O(p4)-constants to eq. (B.5) read

E8(x0, y0) = 8M4P ′(x0)P
′(y0)

[

−E1 −
Nf

2
E2 + E3 + 4E33 − 4E39 − 4E40

]

+

+ 8M6P (x0)P (y0)
[

E10 +
1

2
E11 +

Nf

2
E14 − 2E35 − 2E36

]

+

+ 4M6P (x0)P (y0)g8F
2 [−NfL4 − L5] +

+ 4M6 d

dM2

[

P ′(x0)P
′(y0)

]

g′8F
2
[

−NfL4 − L5 + 2(NfL6 + L8)
]

. (B.30)
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The results for the divergent parts of Ei can be found in ref. [60] for Nf = 3 and will be

given below for general Nf . Taking into account that (in the unquenched case)

NfL4 + L5 − 2(NfL6 + L8) = NfL
r
4 + Lr

5 − 2(NfL
r
6 + Lr

8) +
λ

4Nf
, (B.31)

where Lr
6, Lr

8 are finite, and summing together with the divergences shown in eqs. (5.9)

and (5.15), it can be verified that C8 is finite.

C. The case Nf 6= Nv

For Nf 6= Nv, the set of possible operators is in general larger than for Nf = Nv: the

only restrictions are that the operators be singlets in the full group SU(Nf)R, and have

the correct transformation properties in the subgroup SU(Nv)L. At O(p2) this does not

change the situation for the 27-plet, but it increases the amount of octets to four in total.

Besides O8 defined by eqs. (2.13), (2.12), (2.8), viz.

O8 =
F 4

8

[

(LµPvLµ)ds + (Lµ)ds Tr (PvLµ)
]

, (C.1)

and O′
8 defined by eq. (2.14), there are two additional octets, which we choose to define

such that they vanish in the limit Nf → Nv:

Ô8 ≡ F 4

8
[Lµ (1 − Pv)Lµ]ds , (C.2)

Ǒ8 ≡ F 4

8
(Lµ)ds Tr [(1 − Pv)Lµ] . (C.3)

It should also be noted that these operators only contribute starting at the NLO, since

at tree-level they do not couple to two valence-flavoured mesons. Since for C27 nothing

changes with respect to appendix B, we concentrate on the octets in the following.

The three-point octet correlation function is now of the form

[C8]
ab≡

∫

d3x

∫

d3y
〈

J a
0 (x)

[

g8O8 + g′8O′
8 + ĝ8Ô8 + ǧ8Ǒ8 +

∑

i

EiŌ(i)
8

]

(0)J b
0 (y)

〉

(C.4)

=∆ab
8

{

g8

[

C(x0)C(y0) + D8(x0, y0)
]

+ g′8D′
8 + ĝ8D̂8 + ǧ8Ď8 + E8

}

, (C.5)

where D8 can be found in eq. (5.5) and D′
8 in eq. (5.14). The new functions read

D̂8(x0, y0) = (Nf − Nv)
[

−1

2
D27(x0, y0) +

F 2M2

8
IA(x0, y0)

]

, (C.6)

Ď8(x0, y0) =
F 2M2

4

[

NvIB(x0, y0) − IA(x0, y0)
]

, (C.7)

where we have defined

IA(x0, y0) ≡ G(0;M2)P ′(x0)P
′(y0) −

−M2

2
P (x0 − y0)

[

B(x0) + B(y0)
]

+
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+
1

2
P ′(x0 − y0)

[

B′(x0) − B′(y0)
]

+

+M4

∫ T

0
dτ B(τ)P (τ − x0)P (τ − y0) , (C.8)

IB(x0, y0) ≡ E(0;M2)P ′(x0)P
′(y0) −

−M2

2
P (x0 − y0)

[

B̃(x0) + B̃(y0)
]

+

+
1

2
P ′(x0 − y0)

[

B̃′(x0) + B̃0(x0) − B̃′(y0) − B̃0(y0)
]

+

+M2

∫ T

0
dτ

[

M2B̃(τ) +
1

2
B̃00(τ)

]

P (τ − x0)P (τ − y0) , (C.9)

and the notation follows that in eq. (5.5). The divergent parts read (in the unquenched

case)

D̂8(x0, y0) = D̂r
8(x0, y0) +

F 2λ

4
(Nf − Nv)

[

M6P (x0)P (y0)
]

, (C.10)

Ď8(x0, y0) = Ďr
8(x0, y0) +

F 2λ

2

(

1 − Nv

Nf

)[

M6P (x0)P (y0) − M4P ′(x0)P
′(y0)

]

, (C.11)

where D̂r
8, Ďr

8 are finite.

The list of operators contributing to E8 for Nf 6= Nv is also much longer. We will

not provide any systematic classification of all the possibilities, but only list the additional

operators that are needed for cancelling the ultraviolet divergences at NLO. Using the same

notation as in appendix A [Trv (. . .) ≡ Tr (Pv . . .)], we need

Ō(1′)
8 ≡ −(SPvS)ds , (C.12)

Ō(2′)
8 ≡ −(S)dsTrv (S) , (C.13)

Ō(10′)
8 ≡ {S,LµPvLµ}ds , (C.14)

Ō(10′′)
8 ≡ (SPvLµLµ + LµLµPvS)ds , (C.15)

Ō(11′)
8 ≡ 1

2
(Lµ{Pv,S}Lµ)ds , (C.16)

Ō(14′)
8 ≡ (LµPvLµ)dsTr (S) , (C.17)

Ō(14′′)
8 ≡ (LµLµ)dsTrv (S) , (C.18)

Ō(35′)
8 ≡ −(LµPv∂νWµν + ∂νWµνPvLµ)ds , (C.19)

Ō(39′)
8 ≡ −(WµνPvWµν)ds . (C.20)

With these definitions, we get:

E8(x0, y0) = 8M4P ′(x0)P
′(y0)

[

−E1 − E1′ −
Nf

2
E2 −

Nv

2
E2′ + E3 +

+ 4E33 − 4(E39 + E39′) − 4E40

]

+

+ 8M6P (x0)P (y0)
[

E10 + E10′ + E10′′ +
1

2
(E11 + E11′) +
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i ηi η′i η̂i η̌i

1 (Nv + 2)
(

1
16 − 1

4Nf

)

−Nf

4 + 1
Nf

Nf−Nv

16 − 1
4Nf

−1
8 + Nv

4Nf

1′ 1
8 − 1

4Nf
0 1

4Nf
−1

8

2 (Nv + 2) 1
4N2

f

−1
4 − 1

2N2

f

1
8 − Nv

4N2

f

2′ 1
8 − 1

4Nf
0 −1

8
1

4Nf

3 0 0 0 0

10 (Nv + 2)
(

− 1
32 + 1

16Nf

)

Nf

8
Nf+Nv

32
1
16

(

1 − Nv

Nf

)

10′ 3
16 + Nf

16 0 −Nf

16 − 3
16

10′′ − 3
16 0 0 3

16

11 (Nv + 2)
(

− 3
8Nf

)

0 Nf

8
3Nv

8Nf

11′ 3
8 + Nf

8 0 −Nf

8 −3
8

14 0 0 1
16 0

14′ 1
4 0 −1

4 0

14′′ − 3
16 0 3

16 0

33 (Nv + 2)
(

1
64 − 1

32Nf

)

0 Nf−Nv

64 − 1
32

(

1 − Nv

Nf

)

35 (Nv + 2)
(

− 1
32

)

0 Nv−Nf

32
1
16

35′ 1
16 0 0 − 1

16

36 0 0 0 0

39 (Nv + 2)
(

− 1
64

)

0 Nv−Nf

64
1
32

39′ 1
32 0 0 − 1

32

40 0 0 0 0

Table 1: The coefficients that appear in eq. (C.22), in the unquenched case.

+
Nf

2
(E14 + E14′) +

Nv

2
E14′′ − 2(E35 + E35′) − 2E36

]

+

+ 4M6P (x0)P (y0)g8F
2 [−NfL4 − L5] +

+ 4M6 d

dM2

[

P ′(x0)P
′(y0)

]

g′8F
2
[

−NfL4 − L5 + 2(NfL6 + L8)
]

. (C.21)

Like for C27, the part C(x0)C(y0) in eq. (C.5) is finite, while the other parts contain

divergences. More precisely, D8, D′
8, D̂8, Ď8 are of the forms shown in eqs. (5.9), (5.15),

(C.10), (C.11), the combination NfL4 +L5 of the form in eq. (B.17), while the combination

on the last line of eq. (C.21) is of the form in eq. (B.31). Moreover, writing

Ei = Er
i +

F 2λ

2

(

g8ηi + g′8η
′
i + ĝ8η̂i + ǧ8η̌i

)

(C.22)

where Er
i are finite, the coefficients ηi, η′i, η̂i, η̌i can be derived with the method of ref. [60];

they are listed in table 1. Summing together, all the divergences cancel in C8, as they

should.
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The results for Ei that need to be used for the case Nf = Nv can be obtained from

table 1 by summing together the coefficients with the same “numerical” index that then

correspond to the coefficients of the operators in eqs. (B.19)–(B.29): (E1 + E1′)Nf=Nv

for eq. (B.19), (E2 + E2′)Nf=Nv
for eq. (B.20), etc. It can immediately be seen that the

divergent parts proportional to ĝ8 and ǧ8 cancel in these sums, as has to be the case.

We finally comment on the quenched limit, corresponding formally to Nf → 0 but Nv

fixed. We have seen that for Nf 6= Nv additional operators in general appear, as elaborated

in ref. [32]. However, it is easy to see that the functions IA, IB that appear in eqs. (C.6),

(C.7), vanish in the ε-regime. Therefore the coefficient ǧ8 does not contribute in eq. (C.5)

in the ε-regime. Moreover, D̂8 is determined by the same function D27 that appears in D8

(cf. eqs. (5.5), (C.6)). In particular, the normalised three-point function defined in analogy

with eq. (5.10) obtains for Nf → 0 the form

∆ab
8

[

g8 − (g8 − ĝ8)
Nv

(FL)2

(

ρ−
1

2 β1 − ρ k00

)

]

+ g′8[C′
8]

ab
norm(x0, y0) . (C.23)

We observe that quenched functional behaviour only appears in the part [C′
8]

ab
norm(x0, y0)

(cf. eq. (5.23)), and can thus be eliminated by disentangling the contributions related to g′8,

just like in section 5.2. Moreover, it can be verified that at the NLO in the ε-regime, the

coefficients ĝ8, ǧ8 do not contribute to the correlation function considered in section 5.3,

such that g′8 can be separately determined just like there. The remaining terms in eq. (C.23)

can be disentangled in principle by monitoring the volume dependence, from which it should

be possible to determine the “physical” coefficient g8.

D. Correlation functions for Nv = 4

It has been argued recently that many of the mysteries related to the ∆I = 1/2 rule can

be studied particularly cleanly [both from the conceptual and from the practical point of

view] by considering the SU(4) symmetric situation, i.e. Nv = Nf = 4 [20]. We discuss here

how our predictions can be converted to apply to that situation.

Rather than 27, 8, the dimensions of the relevant irreducible representations are 84, 20

for Nv = 4. The corresponding operators are obtained like the 27 for Nv = 3, but by using

the projection operators P σ
2 P σ

1 in eq. (A.4), with σ = +1 for the 84 and σ = −1 for the 20.

Following the notation in ref. [20], the corresponding operators are denoted by [Ô1]
σ
rsuv.

The three-point correlation function we are interested in now takes the form

[Ĉ1]
ab,σ

rsuv(x0, y0) ≡
∫

d3x

∫

d3y
〈

J a
0 (x)

{

gσ
1 [Ô1]

σ
rsuv(0) +

∑

i

Dσ
i [ ˆ̄Oi]

σ
rsuv(0)

}

J b
0 (y)

〉

. (D.1)

The O(p4) weak operators ˆ̄Oi here have the same chiral structures as the 27-plets of ref. [60],

listed in eqs. (B.6)–(B.13) of appendix B, but each of them comes in two variants after the

valence flavour projection, corresponding to σ = ±. The result can be written in the form

[Ĉ1]
ab,σ

rsuv(x0, y0) = ∆̂ab,σ
rsuv

{

gσ
1

[

C(x0)C(y0) + σD27(x0, y0)
]

+ Eσ(x0, y0)

}

, (D.2)
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where ∆̂ab,σ
rsuv ≡ 2Sσ

rsuv(T
a, T b), with the function Sσ

rsuv(T
a, T b) given in eq. (A.14). The

function D27(x0, y0) is identical to the one for the 27-plet in eq. (4.6).

The functions Eσ(x0, y0) in eq. (D.2) contain the contributions of the O(p4) low-energy

constants, beyond those already contained in the factorized term C(x0)C(y0):

Eσ(x0, y0) = 4M4P ′(x0)P
′(y0) [Dσ

2 + 2Dσ
19 − 4Dσ

24 − 4Dσ
25] +

+ 4M6P (x0)P (y0)

[

Dσ
4 +

Nf

2
Dσ

7 − Dσ
20 − Dσ

21 − F 2(NfL4 + L5)

]

. (D.3)

Taking into account that C(x0) is finite, that the D27 contains the divergences in eq. (4.8),

that the QCD O(p4) constants contain the divergence in eq. (B.17), and that the weak

O(p4) constants contain the divergences

Dσ
4 = Dσr

4 + gσ
1 F 2λ

(Nf + 3σ

8

)

, (D.4)

Dσ
7 = Dσr

7 + gσ
1 F 2λ

(1

4

)

, (D.5)

Dσ
20 = Dσr

20 + gσ
1 F 2λ

(σ

8

)

, (D.6)

Dσ
24 = Dσr

24 + gσ
1 F 2λ

( σ

32

)

, (D.7)

the correlation function Ĉ1 in eq. (D.2) can be seen to be finite.
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[15] L. Giusti, C. Hoelbling, M. Lüscher and H. Wittig, Numerical techniques for lattice QCD in

the ε-regime, Comput. Phys. Commun. 153 (2003) 31 [hep-lat/0212012].

[16] L. Giusti, P. Hernández, M. Laine, P. Weisz and H. Wittig, Low-energy couplings of QCD

from topological zero-mode wave functions, JHEP 01 (2004) 003 [hep-lat/0312012].

– 32 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB521%2C305
http://arxiv.org/abs/hep-ph/9801326
http://jhep.sissa.it/stdsearch?paper=01%281999%29012
http://arxiv.org/abs/hep-lat/9808018
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C84%2C2568
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C84%2C2568
http://arxiv.org/abs/hep-ph/9911233
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB592%2C294
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB592%2C294
http://arxiv.org/abs/hep-ph/0007208
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB188%2C477
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB188%2C477
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB307%2C763
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB307%2C763
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C60%2C889
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C60%2C889
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB300%2C180
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD61%2C094503
http://arxiv.org/abs/hep-lat/9907016
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB469%2C198
http://arxiv.org/abs/hep-lat/9907022
http://jhep.sissa.it/stdsearch?paper=07%282001%29018
http://arxiv.org/abs/hep-lat/0106011
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD64%2C117501
http://arxiv.org/abs/hep-lat/0107014
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C106%2C751
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C106%2C751
http://arxiv.org/abs/hep-lat/0109007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C119%2C822
http://arxiv.org/abs/hep-lat/0209132
http://jhep.sissa.it/stdsearch?paper=07%282003%29033
http://arxiv.org/abs/hep-lat/0306022
http://jhep.sissa.it/stdsearch?paper=02%282004%29003
http://arxiv.org/abs/hep-lat/0309145
http://jhep.sissa.it/stdsearch?paper=11%282003%29023
http://arxiv.org/abs/hep-lat/0309189
http://jhep.sissa.it/stdsearch?paper=02%282004%29023
http://arxiv.org/abs/hep-lat/0311012
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB629%2C445
http://arxiv.org/abs/hep-lat/0112016
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB656%2C226
http://arxiv.org/abs/hep-lat/0211020
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C153%2C31
http://arxiv.org/abs/hep-lat/0212012
http://jhep.sissa.it/stdsearch?paper=01%282004%29003
http://arxiv.org/abs/hep-lat/0312012


J
H
E
P
1
0
(
2
0
0
6
)
0
6
9

[17] L. Giusti, P. Hernández, M. Laine, P. Weisz and H. Wittig, Low-energy couplings of QCD

from current correlators near the chiral limit, JHEP 04 (2004) 013 [hep-lat/0402002].

[18] L. Del Debbio, L. Giusti and C. Pica, Topological susceptibility in the SU(3) gauge theory,

Phys. Rev. Lett. 94 (2005) 032003 [hep-th/0407052];

H. Fukaya, S. Hashimoto and K. Ogawa, Low-lying mode contribution to the quenched meson

correlators in the ε-regime, Prog. Theor. Phys. 114 (2005) 451 [hep-lat/0504018];

T. Mehen and B.C. Tiburzi, Quarks with twisted boundary conditions in the epsilon regime,

Phys. Rev. D 72 (2005) 014501 [hep-lat/0505014];

K. Ogawa and S. Hashimoto, Effect of low-lying fermion modes in the ε-regime of QCD,

Prog. Theor. Phys. 114 (2005) 609 [hep-lat/0505017];

P.H. Damgaard, U.M. Heller, K. Splittorff and B. Svetitsky, A new method for determining

Fπ on the lattice, Phys. Rev. D 72 (2005) 091501 [hep-lat/0508029];

P.H. Damgaard, U.M. Heller, K. Splittorff, B. Svetitsky and D. Toublan, Extracting Fπ from

small lattices: unquenched results, Phys. Rev. D 73 (2006) 074023 [hep-lat/0602030];

W. Bietenholz and S. Shcheredin, Overlap hypercube fermions in QCD simulations near the

chiral limit, Nucl. Phys. B 754 (2006) 17 [hep-lat/0605013];

M. Luz, Determining Fπ from spectral sum rules, hep-lat/0607022.

[19] P. Hernández and M. Laine, Correlators of left charges and weak operators in finite volume

chiral perturbation theory, JHEP 01 (2003) 063 [hep-lat/0212014].

[20] L. Giusti, P. Hernández, M. Laine, P. Weisz and H. Wittig, A strategy to study the role of the

charm quark in explaining the ∆I = 1/2 rule, JHEP 11 (2004) 016 [hep-lat/0407007].

[21] W. Detmold and M.J. Savage, Nucleon properties at finite volume: the ε′-regime, Phys. Lett.

B 599 (2004) 32 [hep-lat/0407008];

P.F. Bedaque, H.W. Griesshammer and G. Rupak, A nucleon in a tiny box, Phys. Rev. D 71

(2005) 054015 [hep-lat/0407009];

W. Detmold and C.-J.D. Lin, Twist-two matrix elements at finite and infinite volume, Phys.

Rev. D 71 (2005) 054510 [hep-lat/0501007].

[22] P.H. Ginsparg and K.G. Wilson, A remnant of chiral symmetry on the lattice, Phys. Rev. D

25 (1982) 2649.

[23] D.B. Kaplan, A method for simulating chiral fermions on the lattice, Phys. Lett. B 288

(1992) 342 [hep-lat/9206013].

[24] Y. Shamir, Chiral fermions from lattice boundaries, Nucl. Phys. B 406 (1993) 90

[hep-lat/9303005];

V. Furman and Y. Shamir, Axial symmetries in lattice QCD with Kaplan fermions, Nucl.

Phys. B 439 (1995) 54 [hep-lat/9405004].

[25] R. Narayanan and H. Neuberger, Chiral determinant as an overlap of two vacua, Nucl. Phys.

B 412 (1994) 574 [hep-lat/9307006]; A construction of lattice chiral gauge theories, Nucl.

Phys. B 443 (1995) 305 [hep-th/9411108].

[26] H. Neuberger, Exactly massless quarks on the lattice, Phys. Lett. B 417 (1998) 141

[hep-lat/9707022]; More about exactly massless quarks on the lattice, Phys. Lett. B 427

(1998) 353 [hep-lat/9801031]; Vector like gauge theories with almost massless fermions on

the lattice, Phys. Rev. D 57 (1998) 5417 [hep-lat/9710089].

[27] P. Hasenfratz, Lattice QCD without tuning, mixing and current renormalization, Nucl. Phys.

B 525 (1998) 401 [hep-lat/9802007].

– 33 –

http://jhep.sissa.it/stdsearch?paper=04%282004%29013
http://arxiv.org/abs/hep-lat/0402002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C94%2C032003
http://arxiv.org/abs/hep-th/0407052
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPKA%2C114%2C451
http://arxiv.org/abs/hep-lat/0504018
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C014501
http://arxiv.org/abs/hep-lat/0505014
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPKA%2C114%2C609
http://arxiv.org/abs/hep-lat/0505017
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C091501
http://arxiv.org/abs/hep-lat/0508029
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C074023
http://arxiv.org/abs/hep-lat/0602030
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB754%2C17
http://arxiv.org/abs/hep-lat/0605013
http://arxiv.org/abs/hep-lat/0607022
http://jhep.sissa.it/stdsearch?paper=01%282003%29063
http://arxiv.org/abs/hep-lat/0212014
http://jhep.sissa.it/stdsearch?paper=11%282004%29016
http://arxiv.org/abs/hep-lat/0407007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB599%2C32
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB599%2C32
http://arxiv.org/abs/hep-lat/0407008
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C054015
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C054015
http://arxiv.org/abs/hep-lat/0407009
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C054510
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C054510
http://arxiv.org/abs/hep-lat/0501007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD25%2C2649
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD25%2C2649
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB288%2C342
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB288%2C342
http://arxiv.org/abs/hep-lat/9206013
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB406%2C90
http://arxiv.org/abs/hep-lat/9303005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB439%2C54
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB439%2C54
http://arxiv.org/abs/hep-lat/9405004
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB412%2C574
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB412%2C574
http://arxiv.org/abs/hep-lat/9307006
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB443%2C305
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB443%2C305
http://arxiv.org/abs/hep-th/9411108
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB417%2C141
http://arxiv.org/abs/hep-lat/9707022
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB427%2C353
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB427%2C353
http://arxiv.org/abs/hep-lat/9801031
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD57%2C5417
http://arxiv.org/abs/hep-lat/9710089
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB525%2C401
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB525%2C401
http://arxiv.org/abs/hep-lat/9802007


J
H
E
P
1
0
(
2
0
0
6
)
0
6
9
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